
RESEARCH ARTICLE

Silencing of transcription factor encoding

gene StTCP23 by small RNAs derived from the

virulence modulating region of potato spindle

tuber viroid is associated with symptom

development in potato

Sarina Bao1, Robert A. Owens2, Qinghua Sun1, Hui Song1, Yanan Liu1, Andrew

Leigh Eamens3, Hao Feng1, Hongzhi Tian1, Ming-Bo Wang4, Ruofang ZhangID
1*

1 School of Life Sciences, Inner Mongolia University, Hohhot, China, 2 Molecular Plant Pathology

Laboratory, USDA/ARS, Beltsville, Maryland, United States of America, 3 Centre for Plant Science, School

of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Australia, 4 CSIRO

Agriculture and Food, Canberra, Australia

* imupc_zhang@mail.imu.edu.cn

Abstract

Viroids are small, non-protein-coding RNAs which can induce disease symptoms in a variety

of plant species. Potato (Solanum tuberosum L.) is the natural host of Potato spindle tuber

viroid (PSTVd) where infection results in stunting, distortion of leaves and tubers and yield

loss. Replication of PSTVd is accompanied by the accumulation of viroid-derived small

RNAs (sRNAs) proposed to play a central role in disease symptom development. Here we

report that PSTVd sRNAs direct RNA silencing in potato against StTCP23, a member of the

TCP (teosinte branched1/Cycloidea/Proliferating cell factor) transcription factor family

genes that play an important role in plant growth and development as well as hormonal regu-

lation, especially in responses to gibberellic acid (GA). The StTCP23 transcript has 21-

nucleotide sequence complementarity in its 3´ untranslated region with the virulence-modu-

lating region (VMR) of PSTVd strain RG1, and was downregulated in PSTVd-infected potato

plants. Analysis using 3´ RNA ligase-mediated rapid amplification of cDNA ends (3´ RLM

RACE) confirmed cleavage of StTCP23 transcript at the expected sites within the comple-

mentarity with VMR-derived sRNAs. Expression of these VMR sRNA sequences as artificial

miRNAs (amiRNAs) in transgenic potato plants resulted in phenotypes reminiscent of

PSTVd-RG1-infected plants. Furthermore, the severity of the phenotypes displayed was

correlated with the level of amiRNA accumulation and the degree of amiRNA-directed

down-regulation of StTCP23. In addition, virus-induced gene silencing (VIGS) of StTCP23

in potato also resulted in PSTVd-like phenotypes. Consistent with the function of TCP family

genes, amiRNA lines in which StTCP23 expression was silenced showed a decrease in GA

levels as well as alterations to the expression of GA biosynthesis and signaling genes previ-

ously implicated in tuber development. Application of GA to the amiRNA plants minimized

the PSTVd-like phenotypes. Taken together, our results indicate that sRNAs derived from

the VMR of PSTVd-RG1 direct silencing of StTCP23 expression, thereby disrupting the
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signaling pathways regulating GA metabolism and leading to plant stunting and formation of

small and spindle-shaped tubers.

Author summary

Potato spindle tuber viroid (PSTVd) is a small RNA pathogen that causes severe pandemic

diseases in potato. How this non-protein-coding RNA induces disease symptom develop-

ment in potato is unknown, thereby hindering the development of effective control mea-

sures. Here we report the first evidence that PSTVd disease is caused by the silencing of

StTCP23, a potato transcription factor encoding gene, by PSTVd-derived small-interfer-

ing RNA (siRNAs). Specifically, we demonstrate that 3´ untranslated region (UTR) region

of StTCP23mRNA contains a 21-nt sequence that is complementary to the virulence-

modulating region (VMR) of PSTVd. Furthermore, we show that StTCP23 expression is

repressed in PSTVd-infected potato, and this repression is accompanied by StTCP23 tran-

script cleavage within the identified region of complementary. In planta expression of

VMR sequences as 21-nt artificial microRNAs (amiRNAs) or infection of potato plants

with a virus-induced gene silencing vector containing a portion the StTCP23 coding

sequence, results in reduced StTCP23 transcript abundance and the expression of PSTVd-

like disease symptoms. Consistent with the predicted functional role of StTCP23 in regu-

lating the gibberellic acid (GA) biosynthesis and signaling pathways, GA levels were

reduced both in PSTVd-infected and amiRNA-expressing plants. Our results provide

compelling evidence that StTCP23 positively regulates potato sprouting and tuber devel-

opment via a GA-related mechanism, and that the disease symptoms that develop upon

PSTVd infection result from silencing of StTCP23 by VMR-derived siRNAs.

Introduction

Viroids are small, non-protein-coding RNA pathogens whose genomes range in size from 246

to 401 nucleotides. Potato spindle tuber viroid (PSTVd), the causal agent of the “spindle tuber”

disease of potato (Solanum tuberosum L.), is a member of the viroid family Pospiviroidae [1, 2].

PSTVd replicates in the nucleus and moves systemically throughout the plant in the phloem,

with its infection resulting in the development of a wide array of symptoms [3]. Stunting is a

common phenotypic outcome of PSTVd infection, and in the case of potato, the tubers of

infected plants are reduced in size with an elongated or spindle-shaped morphology. In addi-

tion, such tubers have prominent eyes evenly distributed over their entire surface. Tubers from

infected plants sprout more slowly than those from healthy non-infected plants, and infected

plantlets exhibit a variety of symptoms [4–6].

As a vegetatively propagated crop, the quality requirements of seed potatoes are extremely

high. Propagation by tubers, cuttings, and micropropagation of plants is highly conducive for

PSTVd transmission [7, 8], and once established, the infection is persistent and extremely diffi-

cult to eliminate by conventional methods such as stem tip stripping [9]. PSTVd is also trans-

mitted by pollen and true potato seed during germplasm collection and hybridization-based

breeding [10]. Despite the threat posed to the production of both seed and ware potatoes,

the mechanism of disease symptom development upon PSTVd infection remains poorly

understood.

Silencing of StTCP23 by sRNAs derived from PSTVd is associated with symptom development in potato
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RNA silencing provides a multi-layered defense system that in plants provides protection

from invasion by exogenous RNA replicons, such as viruses and viroids [11]. RNA silencing is

triggered by the conversion of long double-stranded RNAs (dsRNAs) into small RNAs

(sRNAs) of approximately 21 to 24 nucleotides (nt) in length and the accumulation of such

viroid-derived sRNAs (vd-sRNAs) has been extensively studied for several different viroid-

host combinations [12, 13]. Their high degree of internal base pairing and RNA-RNA mode of

replication make viroids a potent trigger of sRNA-directed RNA silencing with infected hosts

often containing extremely high levels of vd-siRNA [11, 12, 14, 15]. The generated vd-sRNAs

are bound by multiple plant argonaute proteins, thereby supporting the hypothesis that viroid

infection triggers vd-sRNA-directed RNA silencing and that this process plays a role in disease

symptom development [16].

PSTVd contains five structural domains, including the terminal left region, pathogenicity

domain, central conserved region, variable region, and the terminal right region [16]. Within

the pathogenicity domain, it has been shown that even a single nucleotide change within the

so-called virulence modulating region (VMR) can result in dramatic differences in the severity

of the disease symptoms displayed [17, 18]. In Nicotiana species, an artificial microRNA corre-

sponding to the VMR of the PSTVd-RG1 strain directed RNA silencing of a soluble inorganic
pyrophosphatase gene and the development of abnormal phenotypes [19]. A study by Adkar-

Purushothama et al. showed that the sRNAs derived from the same region of the PSTVd-Inter-

mediate strain down-regulated the expression of a callose synthase gene in tomato and altered

the severity of the induced disease symptom [20]. A subsequent in silico study by the same

authors indicated that siRNAs derived from the VMR may also potentially modulate the

expression of a serine threonine kinase receptor gene to regulate disease resistance in tomato

[21]. Furthermore, a study by Katsarou et al. has shown that PSTVd infection alters the expres-

sion of hormonal pathway-related genes in potato, including the gibberellin 7-oxidase (GA7ox)

and gibberellin-insensitive dwarf protein 1 (GID1) genes, although viroid-derived sRNAs were

not found to be responsible [22].

Here we report the identification of a potato transcription factor that shows sequence

homology to the VMR region of PSTVd. We examined the possible targeting of the identified

transcription factor, StTCP23, for RNA silencing by sRNAs derived from the PSTVd genome,

demonstrating that StTCP23 expression was reduced by PSTVd infection, which correlated

with the cleavage of StTCP23mRNA at the complementary region. We also show that trans-

genic potato plants expressing artificial microRNAs derived from the complementary VMR

sequences displayed PSTVd-like phenotypes. In addition, silencing of StTCP23 using a virus-

induced gene silencing vector also resulted in phenotypes that were highly similar to those

observed in PSTVd-infected plants. Our data strongly indicate that PSTVd-induced disease

phenotypes in potato is due to the silencing of StTCP23 by VMR-derived sRNA that alters the

GA biosynthesis and signaling pathway.

Results

The RG1 strain of PSTVd (PSTVd-RG1) was originally isolated from tomato, where severe dis-

ease phenotypes appears in sensitive cultivars upon infection by this strain of viroid [23].

Because the biological consequences of PSTVd-RG1 infection on potato were unknown, it was

necessary to demonstrate the ability of the viroid to cause diseases in this host before investi-

gating a possible role of viroid sRNAs-derived RNA silencing in symptom induction. We

therefore inoculated young potato plantlets (cultivar Atlantic) with infectious RNA transcripts

of PSTVd-RG1. The treated plantlets were transferred to a net house, and allowed to progress

to maturity under natural light conditions. As shown in Fig 1A, PSTVd-infected plants were
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highly branched and stunted, with their leaves being upright, and slightly rugose. Tubers from

infected plants were reduced in size, elongated, and spindle or dumbbell-shaped rather than

being round.

Total RNA was extracted from young leaf tissue collected at various times up to 91 dpi and

analyzed for the presence of both full-length viroid progeny (Fig 1B) and sRNAs derived from

the VMR of PSTVd-RG1 (Fig 1C). PSTVd-RG1 progeny began to appear in the upper portions

of inoculated plants between 14 and 21 dpi, and small RNAs from the upper portion of the

VMR were clearly detectable in leaf tissue collected at 91 dpi. These two factors, the severity of

plant reaction to infection by PSTVd-RG1 and evidence for vigorous levels of viroid replica-

tion, indicated that the combination of PSTVd-RG1 and potato cv. Atlantic is well-suited to

studies of viroid pathogenicity.

A potential target gene of VM-derived sRNAs is down-regulated in PSTVd-

infected potato plants with distinctive vegetative phenotypes

To identify genes potentially targeted by PSTVd-derived sRNAs in potato, we used the web-

based psRNATarget tool to search the potato transcriptome for sequences complementary to

any 21-nt sequence segments of the PSTVd VM region. Results presented in Fig 2A show that

sRNAs of 21-nt beginning at positions 45, 46 and 47 of the PSTVd-RG1 genome have the

potential to target the 3´ UTR of a transcript which encodes a TCP transcription factor

(StTCP23, Solanum tuberosum PGSC Acc. PGSC0003DMT400008728).

Fig 1. Symptoms associated with PSTVd-RG1 infection in potato. (A) Abnormal phenotype induced by PSTVd

infection of potato cv. Atlantic at 60 dpi. Scale bar = 10 cm in whole plant or = 2 cm in tuber image. (B) Accumulation

of PSTVd-RG1 progeny between 7–91 days post inoculation (dpi). Total RNA extracted from mock (black line) or

PSTVd RG1-inoculated (grey line) potato plants was used to monitor the PSTVd titer using RT-qPCR. (C)

Accumulation of small RNAs derived from the VM region of PSTVd-RG1 at 91 dpi. Small RNA extracted from mock

inoculated or PSTVd-infected potato plants were analyzed by northern blot analysis using U6 RNA as an internal

control.

https://doi.org/10.1371/journal.ppat.1008110.g001
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Northern blot hybridization analysis of RNA samples extracted at 91 dpi revealed a clear

decrease in StTCP23 transcript levels in infected plants (Fig 2B), and the results of RT-qPCR

analysis of RNAs collected at various times during the assay provided further evidence for an

inverse relationship between PSTVd-derived vd-sRNA46 and StTCP23 transcript levels (Fig

2C and 2D).

Virus-induced gene silencing of the StTCP23 induces a PSTVd-like

phenotypes in potato

In order to verify the role of altered StTCP23 transcript abundance in the induction of PSTVd-

like phenotypes, virus-induced gene silencing was used to suppress the expression of StTCP23
in potato, and the phenotypes of the resulting virus-infected plants were monitored. As

described in the Materials and Methods, a fragment from the coding region of the StTCP23
gene, approximately 360-nt in length, was inserted into the pTRV2 vector (pTRV2: StTCP23).

pTRV1 (TRV-RNA1) and pTRV2: StTCP23 were then transformed into Agrobacterium tume-
faciens and used to Agro-infiltrate potato seedlings. A fragment of the phytoene desaturase
(PDS) gene, also inserted into the pTRV2 vector (pTRV2: PDS), served as a visual control to

indicate successful viral infection, and negative control for this experiment was the Agro-infil-

tration of potato seedlings with an empty pTRV2 vector (pTRV2: EV).

Fig 2. Targeting of StTCP23 mRNA for silencing by small interfering (si) RNAs derived from PSTVd-RG1. (A) Schematic diagram of the mRNA

encoding StTCP23. Complementarity between a target sequence located in the 3´ UTR and small RNAs derived from the PSTVd-RG1 genome and

beginning at nt position 45 (blue line), 46 (red line), or 47 (green line) are shown. The PairFold online tool was used to predict the minimum free

energy of the resulting RNA duplexes. Purple line, portion of the StTCP23 coding sequence used for VIGS. (B, C) Effects of PSTVd-RG1 infection on

StTCP23mRNA levels at different times post inoculation. Panel B, northern blot analysis of total leaf RNA extracted at 91 dpi, rRNA was used an

internal loading control. Panel C, RT-qPCR analysis of the same series of RNA samples used to monitor PSTVd-RG1 replication (see Fig 1B). (D) Vd-

sRNA46 expression profile in different development stage of PSTVd-RG1-infected plants.

https://doi.org/10.1371/journal.ppat.1008110.g002
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Approximately two months post-inoculation, the plants in which StTCP23 was the target of

VIGS exhibited obvious abnormalities when compared to control plants. The pTRV2:

StTCP23 plants were stunted, and their leaves were twisted. Three months post-inoculation,

the tubers produced by pTRV2: StTCP23 plants were small and spindle-shaped, phenotypically

very similar to those tubers produced by PSTVd-infected plants (Fig 3A and 3B). Importantly,

the abundance of the StTCP23 transcript was reduced in the pTRV2: StTCP23 plants that

expressed disease-like phenotypes. The expression of StTCP23 in silenced plants and TRV

accumulation level were determined by RT-qPCR. The three most recently-emerged leaves

from each of three replicate plants showing an abnormal phenotype at 30 dpi of VIGS were

used for analysis. The RT-qPCR results showed that the expression level of STCP23 in silenced

plants was suppressed by 30% (TRV:03), 55% (TRV:20) or 90% (TRV:11) compared to

those in control plants (Fig 3C) and that there were no significant differences in TRV accumu-

lation levels (Fig 3D). These data supported a role for StTCP23 in regulating overall potato

development.

The 3´ UTR of StTCP23 is targeted by PSTVd-derived sRNAs in a transient

expression assay

To directly demonstrate that the predicted sRNA target sites in the 3´ UTR of the StTCP23
transcript was a genuine target of vd-sRNA-directed silencing, a transient sensor reporter gene

Fig 3. Virus-induced silencing of StTCP23. (A) Morphology of TRV-infected potato plants in which StTCP23 expression has been suppressed by

VIGS. Scale bar = 10 cm (whole plants) or 2 cm (tubers). (B, C) comparison of plant heights and number of tubers (B) and StTCP23mRNA expression

levels (C) in TRV-infected and mock inoculated plants. (D) TRV capsid protein (CP)-coding gene expression levels in StTCP23-silenced and TRV

empty vector-treated potato plants as measured by RT-qPCR.

https://doi.org/10.1371/journal.ppat.1008110.g003
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system was used to test sRNA-directed mRNA degradation. The 71-nt 3´ UTR sequence of

StTCP23, carrying the predicted sRNA target sites, was transcriptionally fused to the 3´ end of

the GFP coding sequence in the pCAMBIA1300-35S-GFP vector. This GFP fusion construct

was then either co-infiltrated with a transient artificial miRNA expression construct created in

pGreen II 62-SK and designed to express vd-sRNA46 (named TR-amiR46 here) or the empty

vector control into potato leaves. Five days post infiltration, potato leaves were visually

assessed for GFP fluorescence with reduced GFP expression taken to indicate TR-amiR46-dir-

ected repression of the 3´ UTR of StTCP23.

As shown in Fig 4A, co-infiltration of the amiR46 vector together with the GFP: StTCP23
3´ UTR vector showed less GFP fluorescence than either the target GFP fusion construct

alone, or following its co-infiltration with the empty vector. The difference in GFP expression

was confirmed by RT-qPCR analysis, which showed that leaves co-infiltrated with the amiR46

vector contained less than 60% as much GFP mRNA as leaves infiltrated with the target GFP

construct alone or when co-infiltrated with empty vector (Fig 4B). This result is consistent

with the 3´ UTR sequence of the StTCP23 gene being a bona fide target of TR-amiR46-directed

RNA silencing.

Fig 4. Predicted targeting of the StTCP23 mRNA by vd-sRNA. (A) Potato leaves were agroinfiltrated with transient

vector expressing (a) GFP: StTCP23, (b) GFP: StTCP23 plus empty vector, (c) GFP: StTCP23 plus TR-amiR46, (d) wild

type control. At 5 dpi the leaves were photographed (4X) using a fluorescence microscope. (B) Potato leaves were

agroinfiltrated using the same plasmid combinations as in (A). At 5 dpi relative GFP expression was quantified by RT-

qPCR. (C) Nested PCR products obtained from 30 RACE Exp.1 and 30RACE Exp.2, using primers targeting the

StTCP23mRNA were separated by 2.0% agarose gel electrophoresis. Predicted structure of the StTCP23mRNA/vd-

sRNA duplex formed by siRNAs derived from the PSTVd-RG1. Arrows indicate the 30 termini of StTCP23mRNA

fragments isolated from the PSTVd-infected plants, as identified by 30RACE Exp.1 and by 30 RACE Exp.2, with the

frequency of each termini shown.

https://doi.org/10.1371/journal.ppat.1008110.g004
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StTCP23 mRNA undergoes sRNA-directed cleavage

To verify the targeting of StTCP23 by PSTVd VMR-derived sRNAs, we next performed 3´

RLM RACE to detect any mRNA cleavage sites based on the methodology outlined in Adkar-

Purushothama et al.[24] and Zuber et al.[25]. In brief, 3´ blocked adaptors were ligated to

total RNA isolated from PSTVd-infected plants, and the ligation product was then used for

cDNA synthesis with an adapter-specific reverse primer followed by product amplification by

nested PCR (S1 Table). Two independent experiments were performed using different adap-

tors, rApp/CTGTAGGCACCATCAAT–NH 2 for 3´ RACE Experiment.1 and /5rApp/

CTGACNNNNNNNNNNNNNNNTGGAATTCTCGGGTGCCAAGGC/3ddC/ for 3´ RACE

Experiment. 2, which both gave distinct PCR product as shown in Fig 4C.

Sequences of the 3´ RLM RACE PCR clones were aligned with the StTCP23mRNA

sequence to identify their 3´ termini. In 3´ RACE Exp.1, six out of eight StTCP23-matching

clones from PSTVd- infected plants had a 3´ nucleotide corresponding to the predicted cleav-

age site between positions 10 and 11 of PSTVd VMd-sRNA45, and the remaining two

StTCP23-matching clones shows cleavage sites corresponding to positions 10 and 11 for VM-

sRNA46. Then in 3´ RACE Exp.2, all six analyzed StTCP23 transcripts obtained for PSTVd-

inoculated plants had 3´ termini identical to the predicted cleavage site between positions 10

and 11 of PSTVd VMd-sRNA45 (Fig 4C). No PCR amplification products were obtained

when a similar experiment was performed using RNA extracted from uninfected wild type

potato plants. These results therefore indicated sequence specific cleavage of the StTCP23
mRNA at the predicted 3´ UTR site by PSTVd VMR-derived sRNAs, specifically the sRNAs

starting at nt positions 45 and 46 of the PSTVd genome.

Cleavage at these two sites was consistent with the relatively strong sequence complemen-

tarity of sRNA45 and sRNA46, with the StTCP23 target sequence compared with other poten-

tial VMR-derived sRNAs such as sRNA47 (Fig 2A). The detection of more frequent cleavage

corresponding to sRNA45 than to sRNA46 could be due to the stronger target binding stability

by sRNA45. In addition, the sRNA45 has a relatively weak 5´ A:U base-pairing in the precur-

sor dsRNA duplex, a feature that favors argonaute loading compared to the stronger and less

favored, 5´ C:G base-pairing of the sRNA46 precursor duplex.

A RT-qPCR analysis of the StTCP23mRNA sequences around the predicted vd-sRNA-

binding site provided further evidence of vd-sRNA-mediated cleavage (S1A Fig). When oligo-

dT primer was used for reverse transcription (RT), the downstream region gave much higher

levels of amplification (PCR3) than the upstream (PCR2) and the region spanning the binding

site (PCR1) in the PSTVd-infected and amiR46 plants but not in the uninfected plant. This

indicated that the mRNA was cleaved at the binding site giving rise to poly(A)-containing 3´

vd-sRNA cleavage product. When using random hexamer RT primer, both the downstream

and upstream regions showed higher levels of amplification than the cross-binding site region,

indicating vd-sRNA-mediated cleavage and the existence of up and downstream cleavage frag-

ments (S1B Fig).

Expression of PSTVd VMR sRNAs as artificial miRNAs induces PSTVd-

like symptom development in potato

To further examine the role of PSTVd VMR-derived sRNAs in disease symptom development,

we transformed potato plants with six amiRNA expression vectors designed to generate 21-nt

small RNAs corresponding to VM region and non-VM regions. Among the six constructs,

four were designed to generate mature 21-nt sRNAs corresponding to VMR sequences of

PSTVd strain RG1, starting at genome nt positions, 45, 46, 47 and 50 (amiRNAs amiR45,

amiR46, amiR47 and amiR50, respectively) (Fig 5A). It is worth noting that the lethal PSTVd
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Fig 5. Evaluation of transgenic lines expressing six PSTVd amiRNA vectors. (A) Rod-like native structure of PSTVd-RG1. The sequence of the upper

portion of the V(irulence) M(odulating) region within the Pathogenicity domain [P] is highlighted in red, and sequences of four amiRNAs derived

from the upper portion of the VM region as well as two other amiRNAs derived from flanking sequences are shown below. (B) Whole plant phenotypes.

Scale bars = 10 cm. (C) Leaf phenotypes. Scale bars = 1 cm. (D) Comparison of average plant height and (E) number of stem branches for amiRNA-

expressing and control plants. (F) Tuber phenotypes. Scale bars = 3 cm. (G) Comparison of tuber numbers and (H) average tuber weights for amiRNA-

expressing and control plants. (I) Flower phenotypes for amiRNA-expressing and control plants.

https://doi.org/10.1371/journal.ppat.1008110.g005
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strains RG1, and KF440-2 show sequence differentiation at nucleotides 46 (C) and 47 (A) com-

pared to the intermediate and mild strains, which have nucleotides G and C at nt. 46 and 47,

respectively. Lethal strain AS1 shows partially sequence differentiation at nucleotides 46 (C)

and 47 (U). These nucleotide variations in the intermediate and mild strains would result in

two mismatches at the 5´ region of sRNA between the VMR sRNAs and StTCP23mRNA (S2

Fig). This would be expected to dramatically reduce the target binding and cleavage efficiency

as mismatches at the 3´ region of sRNA, particularly at the “seed region” (nt. 2–8), are highly

disruptive to target RNA binding. The remaining two constructs (amiR24 and amiR71) were

designed to represent sRNAs derived from non-VMR sequences either upstream or down-

stream from sequence that immediately flanks the VMR of PSTVd-RG1, and further, these

two amiRNAs were determined to have no sequence complementarity to any known solanum
tuberosum target genes [19]. The number of transgenic lines randomly selected for phenotypic

analysis is listed in Table 1, and the typical phenotypes and the frequency of phenotype expres-

sion are further summarized in Table 1 and Fig 5.

None of the plants expressing amiR24 or amiR71 displayed abnormal phenotypes with

both their above and below ground tissues developing normally (Fig 5). Of the twelve amiR50

lines examined, only two lines showed mild phenotypic abnormalities. In contrast, the in
planta expression of the other three VMR-specific amiRNAs, amiR45, amiR46 or amiR47, all

induced phenotypes similar to those that result from PSTVd infection of potato. Abnormal

foliar phenotypes, from mild to severe, occurred in all amiR45, amiR46 and amiR47 transfor-

mant lines assessed (Table 1A). Mild foliar phenotypes included a reduction in plant height

and a slight twisting of leaves without a change in the pattern of branching. Intermediate phe-

notypes included stunting, increased stem branching, and leaf twisting; effects previously

observed in PSTVd-infected potato (Fig 5B and 5C). Ten of the 27 amiR45 lines, eleven of the

24 amiR46 lines, and two of the 19 amiR47 lines displayed severe PSTVd-like disease symp-

toms, namely, severely stunted growth with significant increases in the numbers of main and

Table 1. Proportion of randomly selected primary potato cv. Atlantic transformant lines expressing developmen-

tal abnormalities.

(A) Foliage symptoms

None Mild Moderate Severe

amiR24 25/25a 0 0 0

amiR45 0/27 3/27 14/27 10/27

amiR46 0/24 4/24 9/24 11/24

amiR47 0/19 7/19 10/19 2/19

amiR50 10/12 2/12 0 0

amiR71 16/16 0 0 0

(B) Tuber shape

amiRNA vectors Round Elongated/spindle-shaped

amiR24 100b 0

amiR45 9 91

amiR46 10 90

amiR47 33 67

amiR50 96 4

amiR71 100 0

a Plants showing symptoms/total plants.
b Data expressed as percentages.

https://doi.org/10.1371/journal.ppat.1008110.t001
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lateral stems, loss of apical dominance, and a “bunchy top” appearance caused by shortened

internode length (S3A Fig). The severe foliar symptoms also included smaller sized leaves that

displayed downward curling at their margins, and a more upright growth habit. Overall, the

average height of amiR45, amiR46 and amiR47 transformants was reduced by 26.8, 24.35 and

12.45 cm (Fig 5D), and the average number of stem branches was increased by 4.8, 6.1 and 3.6,

respectively (Fig 5E).

Transformant lines expressing VMR-derived amiRNAs display PSTVd-like

tuber and floral phenotypes

To assess tuber shape, tubers were harvested after 4 months of growth in a net house. Eigh-

teen individual transformant lines containing each amiRNA plant expression vector were

investigated. For plants expressing amiR24 and amiR71, only normal tubers (i.e., non-spindle

shaped) were observed. For amiR50 expressing plants, only 4% of tubers showed elongated

or spindle shaped. In contrast, 91% of amiR45, 90% of amiR46, and 67% of amiR47 tubers

displayed the elongated or spindle shape characteristic of tubers from PSTVd-infected plants

(Table 1B). The plants expressing amiR45 and amiR46, in particular, produced more stolons

than either the WT control plants or the other transformed populations that stemmed from

the in planta expression of the other 4 amiRNA plant expression vectors. The promotion of

stolon formation led to the formation of spindle-shaped, elongated and knobby tubers similar

in shape to tubers of PSTVd-infected plants. A large percentage of such tubers were small in

size, a feature not seen in control plants (Fig 5F). Statistical analysis revealed that amiR45,

amiR46, and amiR47 expressing plant lines generated higher numbers of tubers than either

wild-type plants or those expressing any of the other three amiRNAs, but that these tubers

were reduced in size with lower total weights (Fig 5G and 5H). Further, the tubers that

formed on amiR24, amiR71 or amiR50 plants, were similar in weight to those of wild-type

plants. In particular, the number of tubers harvested from one pot of amiR45 and amiR46

lines was elevated by 1.5-fold compared to either wild-type control plants or those expressing

other amiRNAs. However, in spite of this increased tuber number, the weight of each

amiR45 and amiR46 tuber was reduced by 2-fold. As shown in S3B Fig, the above ground

portions of some amiR45 and amiR46 plants matured early, often requiring only 2 months

from seedling germination to senescence and eventual death compared to the 4–5 months

life cycle typical of wild-type control plants. In addition, the progression of flower develop-

ment and tuber formation was also accelerated in these amiR45 and amiR46 transformant

lines.

PSTVd infection also has been reported to have a negative effect on the sexual reproduc-

tion of the infected host plant. Specifically, viroid transmission in true potato seed as well as

a 50% reduction to pollen viability has been reported for PSTVd-infected tomato [26, 27].

We therefore investigated flower development in the amiRNA transformants. Almost all

plants expressing either amiR45 or amiR46 flowered later and produced fewer flowers than

either the wild-type control plants or transformants that expressed amiR24 or amiR71. Sev-

eral lines also exhibited abnormal floral structures such as shriveled petals (Fig 5I) or

deformed anthers (S3C Fig). Furthermore, the amiR45 and amiR46 transformant lines also

produced reduced amounts of pollen compared to either wild-type plants or the other

amiRNA transformant lines. The pollen produced by amiR45 and amiR46 plants also had

reduced viability and low fertility. Plants expressing amiR47 or amiR50 vector also exhibited

reduced pollen viability compared to wild-type plants or the amiR24 and amiR71 transfor-

mant lines (S3D Fig).
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The severity of the developmental phenotypes expressed by amiRNA lines is

correlated with amiRNA abundance and repression of StTCP23 expression

The abundance of each amiRNA sRNA in the leaf tissues of individual amiRNA lines were

estimated via RT-qPCR. For each amiRNA construct, three independent lines that displayed a

differing degree of phenotype severity (Fig 6A) and showed altered amiRNA abundance via

RT-qPCR (Fig 6B) were again analyzed via RT-qPCR to determine StTCP23 expression levels

(Fig 6C). However, we first attempted to establish the spatial expression pattern of StTCP23
in healthy wild-type potato plants. According to FPKM data (fragments per kilobase of tran-

script per million mapped reads) data obtained from the PGSC database (http://solanaceae.

plantbiology.msu.edu/pgsc_download.shtml), StTCP23 is widely expressing in all tissues, espe-

cially expressed highly in DM1-3 petiole, shoot and leaf, it was also expressed highly in RH pet-

iole, stolon, stem, leaf and flowers (S4A and S4B Fig). Using the RT-qPCR approach, the

StTCP23 gene was determined to be highly expressed in nodes, stolon, stem and dormant

tubers, but was also expressed at a readily detectable level in the leaf (S4C Fig), indicating that

StTCP23may play an important role in stem branching, tuber development and leaf morphol-

ogies. In order to normalize the test point, especially considering of the small RNAs and

PSTVd transmission and accumulation activity in plant tissues, we choose leaf tissue as the

sampling point in further StTCP23 detection.

As shown in Fig 6C, the expression of StTCP23 was significantly down-regulated in

PSTVd-infected plants and in amiR45, amiR46 and amiR47 transformant lines. In addition,

the degree of StTCP23 down-regulation showed a strong inverse correlation with the abun-

dance of each amiRNA that accumulated in each amiRNA transformant line (Fig 6B and 6C).

RT-qPCR also revealed that the overall level of StTCP23 down-regulation was stronger in

amiR45 and amiR46 lines than in amiR47 lines, which is consistent with the generally more

severe phenotypes displayed by the amiR45 and amiR46 transformant lines than by the trans-

formant lines expressing the amiR47 sRNA. Furthermore, this result was also consistent with

the amiR45 and amiR46 sRNAs having a more extensive sequence complementarity to the

StTCP23mRNA than the amiR47 sRNA (Fig 2A). The data presented in Fig 6 also reveals

strong correlation between amiRNA accumulation and the severity of PSTVd-like phenotypes

displayed by the amiR45, amiR46 and amiR47-expressing plant lines. Plant lines, amiR45-3

and amiR46-2, which exhibited the most severe phenotypes (Fig 6A) among the three tested

lines of each amiRNA population during the three-month assessment period, contained the

highest amiRNA level and had the greatest reduction (approximately 20-fold) in StTCP23
expression. Plant lines, amiR45-14 and amiR46-4, which displayed intermediate phenotypes,

showed a lower level of amiRNA accumulation and StTCP23 down-regulation (5 to 10-fold).

No significant down-regulation of StTCP23 expression was detected in the plant lines that

expressed any of the other amiRNA constructs (Fig 6B and 6C), a finding that was consistent

with the general lack of PSTVd-like phenotypes in these plants. Taken together, our results

showed a clear correlation between the abundance of PSTVd VMR-derived amiRNAs, the

degree of StTCP23 down-regulation, and the severity of the PSTVd-like phenotypes displayed

by the amiRNA lines. These results indicate that PSTVd VMR-derived sRNAs target the

StTCP23 gene in potato to induce disease symptom development.

Survey for other potential target genes for PSTVd amiRNAs

To investigate whether other potato genes might be targeted by the VMR-derived amiRNAs

thereby contributing to the disease phenotypes observed in the transgenic plants, we searched

the potato genome for potential target genes using the software http://plantgrn.noble.org/v1_

psRNATarget/ for target gene prediction and https://www.uniprot.org/blast/ for protein blast.
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Expression of the putative target genes was then analyzed using RT-qPCR in amiRNA lines as

well as in PSTVd-infected plants. Results from these analyses are listed in S1 File.

StTCP23 was the top-ranking target gene for amiRNA46 based on the stability of amiRNA::

target gene duplex. For amiRNA45, StTCP23 ranked second based on duplex stability, but the

Fig 6. Variation in amiRNA and StTCP23 expression among different transgenic potato lines expressing amiRNAs. (A) Disease severity index of

amiRNA transgenic lines. Mean values (n = 18) are shown. (B) RT-qPCR quantitation of PSTVd sRNA levels in transgenic lines. In each panel, the

leftmost bar is a control derived from PSTVd-RG1-infected non-transgenic plants. From left to right, the remaining three bars are values from

transgenic plants expressing severe, intermediate, or mild symptoms. (C) Relative StTCP23mRNA in amiRNA transgenic lines expressing severe,

medium, or mild symptoms.

https://doi.org/10.1371/journal.ppat.1008110.g006
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first and third ranking genes as well as most of the remaining genes all contained a G:U wobble

base pair at one of the central nucleotides, which would negatively affect the target cleavage

efficiency (base pairing at nucleotides 10 and 11 of sRNA is critical for target RNA cleavage).

Thus, StTCP23 was predicted to be the best target for both amiRNA45 and amiRNA46. Con-

sistent with the sequence alignment results, StTCP23 showed the strongest and most consistent

down-regulation in both the amiRNA lines and PSTVd-infected plants (S5 and S6 Figs). Addi-

tionally, some of the other down-regulated targets are not well-defined or annotated, and

some are involved in general cellular functions of plants, with few being directly related to

plant growth and development. Fewer potential target genes were identified for amiRNA47

than amiRNA45 and amiRNA46. Five of these putative target genes for amiRNA47 showed

downregulation in PSTVd-infected plants, of which three, including StTCP23, membrane-

anchored ubiquitin-fold protein and glutaredoxin-C9 coding genes were also downregulated

in the amiRNA47 plants. These additional putative target genes merit further investigation in

future studies, but the relatively weak phenotypes of the amiRNA47 plants as compared with

those expressing amiRNA45 or amiRNA46 suggested that these other genes do not play a

major role in development of PSTVd- induced phenotypes in potato.

Three putative target genes were predicted for amiRNA50, but only one showed downregu-

lation in PSTVd- infected and amiRNA50 plants. Again, the weak phenotypes of the

amiRNA50 transgenic population indicated that this putative target was unlikely to be a pri-

mary target for PSTVd disease induction. Only one and two putative target genes were pre-

dicted for amiRNA24 and amiRNA71, respectively, but the central portions of the respective

amiRNA::target duplexes contained multiple G:U base pairs, which is likely to result in weak

target RNA cleavage. This is consistent with the observed lack of phenotypes in the amiRNA24

and amiRNA71 plants. Thus, this target gene survey confirmed the status of StTCP23 as the

top candidate gene for PSTVd sRNA-induced RNA silencing in potato. This result also sup-

ports the dominant role of the interaction between Vd-sRNA45/46 with StTCP23 in PSTVd-

induced disease symptom development.

Similar effects on tuber formation and sprouting behavior in amiRNA

transgenic and PSTVd-infected plants

Seed potatoes infected by PSTVd routinely show delayed plant emergence or, reduced rate of

emergence, in the next generation [28]. Furthermore, the germination efficiency of PSTVd-

infected tomato seed is significantly lower (53%) than non-infected seed (98%) [29]. We

therefore investigated the sprouting and emergence performance of tubers harvested from

healthy plants, PSTVd-infected plants, and plants expressing either the amiR46 or amiR71

vector.

After storage for two months under natural light conditions, tubers started to sprout. The

sprouting behavior of the amiR46 tubers was altered in terms of the number of sprouts pro-

duced per tuber. As shown in Fig 7A, the buds from the harvested amiR46 tubers also exhib-

ited a low degree of germination and produced sprouts as the aerial tubers were developing.

Tubers from the uninfected control plants showed a higher degree of sprouting during storage

than either amiR46 or PSTVd-infected plants. Shoots were evenly distributed over the surface

of healthy tubers with an average of 8–10 buds per tuber that produced sprouts of approxi-

mately 6.0 mm in length after storage for 10 weeks at room temperature. Tubers from amiR46

lines showed a lower level of sprouting during storage than the controls, and buds were distrib-

uted only around the navel. There were only 1–3 abnormal buds per tuber with an average

shoot length of approximately 2.6 mm. New tubers also formed from sessile buds derived from

mother tubers, resulting in protruding eyes and/or knob-like tubers. Moreover, in transverse
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sections of tubers from amiR46 and PSTVd-infected plants, axillary meristems appeared mis-

shapen or developmentally disabled. In addition, outgrowth of lateral buds led to the produc-

tion of knobby tubers, a condition not seen in control plants (Fig 7A). After the sprouted

tubers were transferred to pots containing soil, young plantlets emerged from the bud eyes

Fig 7. Regulation of the GA pathway by amiRNA46 and StTCP23. (A) Sprouting behavior of tuber discs prepared

from amiRNA transgenic and control potato lines. (a, b, c), mock inoculated plants; (d, e, f), transgenic plants

expressing amiR71; (g, h, i), transgenic plants expressing amiR46; (j, k, l), transgenic plants expressing amiR47; (m, n,

o), PSTVd inoculated non-transgenic plants. (a, d, g, j, m), sprouting behavior of whole tubers, scale bar = 2 cm; (b, e,

h, k, n), sprouting behavior of individual buds, scale bar = 2 mm; and (c, f, i, l, o), cross sections of individual sprouting

buds under the scanning electron microscope, scale bar = 1 mm. (B) Delayed emergence of new stems in transgenic

plants expressing amiR46, amiR47 and PSTVd-inoculated non-transgenic plants as compared with transgenic plants

expressing amiR71 and uninoculated non- transgenic control plants. (C) Comparison of endogenous GA3 levels in

uninfected control, amiR45, amiR46, amiR47, amiR71, and PSTVd-infected non- transgenic plants. (D) RT-qPCR

quantitation of selected genes involved in gibberellin metabolism. Total RNA was extracted from tuber harvested at

bulking stage during potato tuber development. (E) Comparison of plant height for the different treatments. (F)

Morphology of tubers collected from non-transgenic and amiR46, amiR24 transgenic plants after treatment with

ethanol, PBZ, or GA3. Scale bars = 3 cm.

https://doi.org/10.1371/journal.ppat.1008110.g007
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between 3–10 d after planting. Emergence time was significantly delayed in amiR46 and

PSTVd-infected plants as compared with either the wild-type control or the amiR47 and

amiR71 plant lines (Fig 7B).

StTCP23 interacts with the GA pathway to affect tuber development

The life cycle of a potato tuber is controlled by cycles of meristem activation and deactivation

mediated via symplastic association and disassociation of the tuber apical bud [30–32]. Previ-

ous studies have shown that gibberellins are the most important hormonal regulators of bud

outgrowth, and seed potato sprouting are also thought to be involved in stolon growth and

tuber development [33–37]. StTCP23 is a class I TCP transcription factor whose closest para-

logs in Arabidopsis, AtTCP14 and AtTCP15 (S7A Fig), mediate gibberellin-dependent activa-

tion of the cell cycle during germination [38, 39]. In order to assess the possible involvement

of StTCP23 in the GA pathway during tuberization, we compared the GA contents of tubers

collected from amiRNA transgenic and control plants. The resulting data revealed that GA lev-

els were significantly lower in tubers from either amiR45 and amiR46 plant lines or from

PSTVd-infected plants, as compared to the GA levels of amiR47 and amiR71 tubers or the

tubers of uninfected Atlantic plants (Fig 7C). Consistent with this reduced GA level, RT-qPCR

analysis showed that the expression levels of the GA biosynthesis-associated genes, StGA3ox2,

StGA20ox1 and StGA7ox, were all down-regulated in amiR45, amiR46 and PSTVd-infected

plants. This down regulation coincided with the up-regulation of the GA degrading gene,

StGA2ox1 (Fig 7D).

DELLA proteins modulate multiple signaling pathways through physical interaction with

transcription factors that include members of the TCP transcription factor family [40–42].

Previous studies have shown that AtTCP15 and AtTCP14 (the two Arabidopsis transcription

factors exhibiting the highest homology to StTCP23) are able to interact with AtGAI and

AtRGL2, two DELLA proteins involved in the regulation of germination in Arabidopsis [43–

44]. RT-qPCR analysis revealed increased expression of GAI in amiR45, amiR46 and PSTVd-

infected plants as compared to mock inoculated wild-type potato plants (Fig 7D). Decreased

gibberellin content has also been reported to result in decreased expression of the gibberellin

receptor gene, GID1 [42, 45, 46]. Consistent with this finding, our data revealed that compared

to mock inoculated wild-type potato plants, StGID1 transcript levels were slightly, but signifi-

cantly, down-regulated in the amiR45, amiR46 and PSTVd infected plants (Fig 7D). Taken

together, these results suggested that StTCP23 down-regulation in amiR45 and amiR46 plants

as well as PSTVd-infected plants may reduce GA accumulation by changing the expression

levels of genes encoding key enzymes in GA metabolism, thereby influencing bud growth.

In order to further explore the role of StTCP23 in mediating changes in GA levels during

tuber development, we compared the effects of treating wild-type control plants as well

as those expressing amiR46 or amiR24 with either ethanol, GA3, the GA3 inhibitor paclobu-

trazol (PBZ), or a combination of GA3 plus PBZ. PBZ-treatment of wild-type plants pro-

duced greater numbers of smaller sized tubers than control plants treated with ethanol

alone (S7B and S7C Fig). Treated plants resulted in stunting and twisting. GA3 treatment

restored the height of amiR46 plants to that of normal wild-type plants (Fig 7E). In addition,

treatment of amiR46 plants with GA3 resulted in the formation of large, round tubers (Fig

7F). Furthermore, the application of GA3 to previously PBZ-treated plants, restored plant

height and tuber number to levels observed in control plants treated with ethanol alone (Fig

7E, S7B and S7C Fig). Taken together, these results strongly suggested that StTCP23 posi-

tively regulates potato plant sprouting and tuber development via a GA-dependent

mechanism.
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Discussion

Potato is the third largest food crop globally, surpassed only by rice and wheat. PSTVd infec-

tion has a significant impact on the yield and quality of potato, causing such characteristic dis-

ease symptoms as stunted growth, and the formation of small and spindle-shaped tubers. As a

vegetatively propagated crop, the quality of seed potato tubers is extremely important to potato

production. However, once infection is initiated, PSTVd is difficult to eliminate from infected

tubers [47, 48], making it an extremely difficult pathogen to control.

The importance of the nucleotide sequence of its non-protein-coding genome in PSTVd

disease symptom development has long been recognized. For instance, the nucleotide

sequence of the virulence modulating region (VMR) located on the left side of its rod-like

RNA structure is known to be important in directing PSTVd pathogenicity, with one to a few

nucleotide changes leading to dramatic differences in disease severity [49, 50]. Small RNAs

derived from the VMR region have been previously predicted and/or demonstrated to target

different host genes for silencing in several plant species such as tomato and Nicotiana, and

that this sRNA-induced host gene expression modulation has been proposed to account for

the induction of PSTVd disease-like symptoms in infected plants [2, 19, 20, 24, 51–53]. How-

ever, the molecular events and/or pathways linking the modification of host gene expression to

the disease symptom development remain to be identified. Furthermore, whether VM-derived

sRNAs also target host genes in potato and whether sRNA-directed host gene silencing is

responsible for the PSTVd disease symptoms observed in this species have remained

unknown.

In the present study, we identified the transcript of StTCP23, a potato gene encoding TCP

transcription factor, as a potential target for VMR-derived sRNA-directed expression regula-

tion. Bioinformatic analysis revealed a high level of sequence complementarity between the 3´

UTR of StTCP23 and the VMR sequence from nt 45 to 65 of the PSTVd-RG1 genome. Using a

combination of northern blot and RT-qPCR analysis, we first demonstrated the accumulation

of 21-nt sRNAs specific to the VMR in PSTVd-inoculated plants 3 months post inoculation.

Furthermore, this accumulation of VMR-specific sRNAs was associated with decreased

StTCP23 transcript abundance and PSTVd disease symptom development. 3´ RLM RACE

analysis of PSTVd-infected potato plants detected StTCP23 cleavage products that aligned to

the expected cleavage position within the region of StTCP23 sequence homology to the PSTVd

VMR. Also, virus-induced gene silencing of StTCP23mRNA, in the absence of PSTVd infec-

tion, resulted in PSTVd-like phenotypes in potato. Taken together, these results provide strong

evidence that VMR-derived sRNAs direct mRNA cleavage-based silencing to repress the

expression of StTCP23 upon PSTVd infection.

To demonstrate that reduced StTCP23 expression was specific for the VMR-derived

sRNAs, and that this VMR-sRNA-directed expression repression was responsible for the

appearance of PSTVd disease symptoms, we expressed a series of 21-nt artificial miRNAs hav-

ing the same sequences as the VMR-derived sRNAs in transgenic potato. Expression of

amiR45 and amiR46, corresponding to Vd-siRNA45 and Vd-sRNA46, resulted in both the

down-regulation of the putative target gene, as well as the expression of phenotypes closely

resembling those displayed by wild-type potato plants upon infected by PSTVd-RG1. Further-

more, some of the amiR46 transformant lines also matured, set tubers, and entered senescence,

more rapidly than non-transformed potato plants. Lines expressing amiR47 or amiR50, corre-

sponding to VMR sequences beginning at genome positions nt 47 and nt 50 respectively, also

exhibited a similar array of PSTVd-like symptoms, albeit with reduced severity, and in a

smaller proportion of the total transformant population. In contrast to the lines expressing

VMR-derived amiRNAs, potato expressing amiR24 or amiR71 sRNA, sRNAs that correspond
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to the sequences flanking the VMR, were wild type-like in both plant growth and tuber forma-

tion and failed to display any readily observable phenotypes.

The relatively weak phenotypes associated with the in planta expression of the amiR47

sRNA, in comparison to the more severe phenotypes displayed by plant expressing amiR45 or

amiR46, were likely due to the reduced number of perfectly matched or G:U wobble base-pair-

ings in the amiR47::StTCP23 duplex as compared to either the amiR45::StTCP23 or amiR46::

StTCP23 duplex. Similarly, comparison of amiR50 with the 21-nt StTCP23 target gene

sequence reveals only 14 nts of perfect complementarity for the corresponding duplex. The

predicted thermodynamic stability of the amiR50::StTCP23 duplex (ΔG = -7.75 kcal/mol) was

also much weaker than any of the corresponding duplexes formed between the StTCP23 target

gene and the amiR45 (ΔG = -22.3 kcal/mol), amiR46 (ΔG = -21.6 kcal/mol), or amiR47 (ΔG =

-19.3 kcal/mol) sRNAs. This difference in thermodynamic stability likely accounts for the fact

that weakest phenotypic effects were observed for the amiR50 transformant lines among the

four VMR-derived amiRNA transformant line populations studied. BLAST searches of cur-

rently available S. tuberosum transcriptome data for sequences complementary to two non-

VMR amiRNAs, amiR24 and amiR71, failed to identify any putative target transcripts of func-

tional relevance, suggesting that neither sRNA contributes to PSTVd-induced host gene silenc-

ing in potato.

Taken together, the strong correlation between the amiRNA::StTCP23 sequence comple-

mentarity and the severity of the developmental phenotype expressed by the VMR-derived

amiRNA plants together with the lack of any visible phenotypes in the non-VMR amiRNA

expressing plants, strongly indicates that amiRNA-directed RNA silencing of StTCP23 is

responsible for the phenotypes expressed by transformed potato plants. These results also sug-

gest that the corresponding VMR-derived sRNAs in PSTVd-infected potato are responsible

for the onset of disease symptom development by directing silencing of StTCP23. StTCP23

belongs to the TCP class of transcription factors, a group of transcription factor that play an

important role in regulating plant growth and development, especially leaf development, cell

proliferation in young internodes and specialized floral organs, and the development of branch

and leaf shape [54–59]. While the function of TCP in potato has not been studied extensively,

two recent reports have already demonstrated that StTCP1 is involved in the control of meri-

stem activation and branched1a encodes a TCP transcription factor that controls aerial and

underground lateral shoot outgrowth, as well as tuber development in potato [60, 61].

TCP family genes share certain structural similarities with other proteins containing basic

helix-loop-helix (bHLH) motifs that facilitate DNA binding and protein-protein interactions,

and a small number of recent reports have shown that interaction of class 1 TCP transcription

factors with DELLA proteins in the shoot apex of the inflorescence act to control plant height

and reduced responsiveness to gibberellins [62, 63]. The abnormal phenotypes observed in the

amiR45 and amiR46 transformed lines as well as in StTCP23-VIGS plants, are consistent with

these findings, namely, down-regulation of StTCP23 expression, and therefore, StTCP23 activ-

ity in these plants resulted in stunting, leaf twisting and abnormal branching in the foliage as

well as the formation of elongated, spindle-shaped tubers in their underground portions. GA

promotes the ubiquitination and degradation of the growth-repressing DELLA proteins. Low

levels of GA allow DELLA proteins to accumulate, and these proteins then bind to and inacti-

vate a number of transcription factors having critical regulatory effects on plant development.

Twenty percent of the proteins that have been demonstrated to interact with DELLA proteins

belong to the TCP transcription factor family [64]. GA-induced DELLA degradation would

therefore release these TCPs, thereby stimulating shoot elongation and seed germination

respectively [65].
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The formation and growth of the potato tuber is a complex process that is regulated by

many hormones; in particular, the action of GA has been implicated in several different aspects

of tuber formation. Onset of tuberization is strongly correlated with a drop in bioactive GA in

subapical regions of the stolon, and early induction of the catabolic enzyme, StGA2ox1, plays a

crucial role in this process [33]. However, an increased in bioactive gibberellins levels owing to

specific expression of a biosynthetic GA3ox enzyme in the stolons resulted in only a very subtle

effect on tuberization [66, 67]. Either the up-regulation of a gene involved in GA inactivation

(StGA2ox1), or the down-regulation of a GA biosynthesis gene (StGA3ox2) would allow for a

rapid reduction in GA content within the swelling stolon required for normal tuber formation

[68].

Katsarou et al. have reported that PSTVd infection leads to down-regulation of StGA7ox
expression in developing potato tubers [22]. Furthermore, the expression of one additional

gene, StGA20ox1, involved in the synthesis of the GA precursor, GA20, has been shown to be

under negative feedback control by GA via repression of the DELLA-GAF1 complex [69]. Dif-

ferential expression of these GA metabolism genes in PSTVd infected plants provides new

insight into the effects of PSTVd infection on GA metabolism and signaling during tuber devel-

opment. For the first time, the effects of PSTVd infection were observed at every level in the sig-

naling pathway in this study. How the effects of transcription factors such as StTCP23 are

propagated downstream to alter the expression and/or abundance of individual enzymes

remains to be determined. Class I TCP transcription factors show a preference for interaction

with cis-elements containing the sequences, TTGGGCC, GTGGG, GTGGGCCNNN and

TGGGC [57, 62, 64, 70–72]. Considering that StTCP23 belongs to Class 1, we have examined

the promoter region (arbitrarily defined as -2000 to -10 bp from the initial ATG start codon) of

StGA7ox and five other GA-related genes assessed in our study for the presence of any of these

elements. Each promoter contained at least two of these elements, but no single combination of

elements could be correlated with either up- or down-regulated expression (S2 Table).

Our results provide the strongest evidence to date for a central role for RNA silencing in

mediating disease induction upon PSTVd infection (and presumably by other pospiviroids).

In potato tubers, reduced expression of the TCP transcription factor, StTCP23 directed by

sRNAs derived from the VMR of PSTVd was shown to be accompanied by changes in the lev-

els of transcripts encoding proteins involved in GA signaling as well as gibberellin biosynthe-

sis/degradation, a decrease in GA concentration, and morphological changes very similar to

those caused by paclobutrazole, a widely-used inhibitor of GA3 activity (Fig 8).

Additional studies are required to characterize (1) interactions between StTCP23, the

DELLA protein GAI, and the gibberellin receptor GID1, and (2) the role played by StTCP23

in regulating the expression of key genes involved in GA biosynthesis and degradation. Of par-

ticular interest are possible differences in interactions occurring in the foliage versus those

occurring in tubers. If sRNAs from the VMR do, in fact, play a key role in initiating the disease

process associated with PSTVd infection, it may be possible to suppress their function and

hence disease development using a sRNA sponge strategy in the future. While our studies pro-

vide strong evidence for the vd-sRNA-mediated disease mechanism in potato, the involvement

of other sRNA-independent mechanisms in viroid diseases should also be considered given

the many common features of disease symptoms by different viroids in plants.

Methods

PSTVd infection

A severe isolate of PSTVd (PSTVd-RG1; GeneBank accession number: U23058.1) was used to

infect potato plants. Precisely full-length monomeric RG1 RNA transcripts were synthesized
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from Hind III-linearized plasmid PzTR8 using T7 RNA polymerase as described by Owens

et al. [73]. Transcripts were quantified by UV spectrophotometry, and their integrity was con-

firmed by 1.5% agarose gel electrophoresis. Inocula were diluted to a final concentration of

100 ng/ul in 50 mM sodium phosphate buffer (pH 7.0). For mechanical inoculation, young

leaves of potato plants at the 10-leaf stage were dusted with carborundum (600-mesh) before

an aliquot (e.g., 10 μl) of inoculum was placed on the leaf and gently rubbed 10–20 times with

a sterile glass bar. The inoculated plants were immediately rinsed with distilled water and incu-

bated for two hours in a insect-free, air conditioned greenhouse controlled at a cool tempera-

ture before transfer to 25–30˚C with high light intensity (fluorescent, 40 W×4, ca. 60 cm

distance). Nine seedlings per transgenic line were used for each infection assay, and the assay

was repeated tree times [13].

Construction of PSTVd amiRNA vectors

Six PSTVd-specific amiRNA plant expression vectors were generated using the pBlueGreen

amiRNA cassette that is based on the A. thalianaMIR159B precursor transcript as described

by Eamens et al. [19]. Four of the six amiRNA vectors were designed to generate mature 21 nt

amiRNA-sRNAs corresponding to VMR sequences that start at PSTVd-RG1 genome positions

45, 46, 47, or 50. The remaining two sequences start at positions 24 or 71 outside the VM

region and acted as controls.

Potato transformation and growth

Artificial miRNA vectors that contained the modified amiRNA precursor transcript (PRI-A-

MIRNA) in the desired 5´-3´ orientation were introduced into Agrobacterium tumefaciens
strain LB4404 via electroporation in the presence of the helper plasmid pSoup [74]. Agrobac-
terium-mediated transformation of potato (Solanum tuberosum L. cv. Atlantic) was conducted

as previously described [75], using 10 mg/L phosphinothricin as the selective agent. Primary

transformant lines were grown in vitro on MS (Murashige and Skoog) agar medium contain-

ing 3% sucrose and 0.6% agar, pH 5.7 ± 0.05. Young plants with 7–10 leaves were transferred

to soil and grown in a 18–25˚C greenhouse or net house under natural light. Standard PCR

techniques and primers p35SP-F2 and p35SP-R1 (S1 Table) were used to identify transgene-

positive segregants.

Fig 8. Effects of PSTVd-mediated silencing of StTCP23 silencing on plant development. Solid lines, regulatory

links observed in our experiments; dashed lines, possible regulatory links observed in other studies. Arrows indicate

positive regulation; blunt ended bars indicate inhibition.

https://doi.org/10.1371/journal.ppat.1008110.g008
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Bioinformatic and phylogenetic analysis

The 21 nt sequences corresponding to the mature sRNAs processed from the six PSTVd-

specific amiRNA plant expression vectors created for this study were used to interrogate pub-

licly available S. tuberosum transcriptome datasets using their Basic Local Alignment Search

Tool (BLAST) function. Datasets searched for potential PSTVd-specific amiRNA target

sequences included: psRNATarget: A Plant Small RNA Target Analysis Server (http://

plantgrn.noble.org/psRNATarget/), National Centre for Biotechnological Information

(http://blast.ncbi.nlm.nih.gov/), Potato Genome Sequencing Consortium (http://solanaceae.

plantbiology.msu.edu/pgsc_download.shtml), The Arabidopsis Information Resource

(https://www.arabidopsis.org/portals/education/aboutarabidopsis.jsp). The free energy of

potential duplexes between amiRNA sRNAs and their bioinformatically identified target

gene mRNAs, represented as a delta G (ΔG) value, was determined using Pairfold (http://

www.rnasoft.ca/cgi-bin/RNAsoft/PairFold/pairfold.pl). Guided by an updated classification

of plant TCP transcription factors, full-length sequences of TCP genes from other species

were downloaded from the corresponding databases to search for StTCP23 homologs. Multi-

ple sequence alignments were carried out using ClustalW and plotted with Bioedit (http://

www.mbio.ncsu.edu/bioedit/bioedit.html). Sequence identity was analyzed using MegAlign

in DNASTAR (Lasergene7.1, USA). A neighbor-joining phylogenetic analysis (1000 boot-

strap replicates) was performed using Molecular Evolutionary Genetics Analysis software

(MEGA, version 7.0.14).

RNA Extraction, RT-qPCR, and northern blot analysis

Total RNA was extracted from various potato tissues using RNAiso Plus TRIZOL reagent

(TakaRa, Japan). Small RNAs were isolated using the Small RNA Isolation Kit (TaKaRa,

Japan), and oligo (dT)-primed first strand cDNA synthesis was carried out using 1 ug total

RNA and the PrimerScript RT reagent kit (Takara, Japan) according to the manufacturer’s

instructions. Aliquots (10 ng) of the resulting cDNA were used for the subsequent RT-qPCR

assays together with appropriate primer combinations. Gene-specific primers sets designed

using the Primer 5 program are described in (S1 Table).

PCR reactions (20 μl) containing QuantiMix SYBR (Takara, Japan) were incubated as fol-

lows: 30 s at 95˚C followed by 40 cycles of 5 s at 95˚C, 31 s at 60˚C. RT-qPCR was performed

on a Quantstudio 7 Real Time PCR system (Applied Biosystems, USA), using SYBR Premix Ex

Taq II (Takara, Japan) with gene-specific primers (S1 Table). To normalize RT-qPCR results,

the potato actin-1 gene (PGSC0003DMT400071331) was used as an internal reference. CT val-

ues were obtained with the Real-Time PCR System StepOne version 2.1 software (Applied Bio-

systems). Relative fold expression changes were calculated by the comparative CT method:

fold change was calculated as 2-ΔΔCT. Gene expression patterns were compared using heat

maps generated with the software MultiExperiment Viewer.

Northern blot analyses were performed as previously described [19] using 3´-32P end-

labeled oligonucleotide probes. U6 and ribosomal RNAs (5S, 18S, and 28S) were used as

internal controls. Probe sequences are listed in (S1 Table). As for small RNA hybridization,

we ran all samples in the same gel, and blotted all RNA samples to the same hybridizing fil-

ter. We then cut the top part off the whole blot and hybridized it with the U6 RNA probe as

loading control. For the bottom part containing the sRNAs, we separated the lanes, and

hybridized each lane separately with the different vd-sRNA probes. The different hybridized

strips were then assembled and presented together with the U6 hybridized image as shown

in Fig 1C.
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3´ RNA ligase-mediated rapid amplification of cDNA ends

RISC-mediated cleavage sites in TCP transcription factor StTCP23mRNA isolated from

PSTVd-infected potato plants were identified by 30 RLM-RACE. For 3´ RACE Exp.1, a 3´ ade-

nylated, 3´ amine-containing oligodeoxynucleotide universal miRNA cloning linker (NEB,

Inc, USA) was ligated to the free 3´-hydroxyl end of cleaved RNAs. Specifically, 10 μg of total

RNA was mixed with a universal miRNA cloning linker in the absence of ATP and incubated

for 2 h at 37˚C in the presence of T4 RNA ligase I. The ligation products were reverse tran-

scribed using a linker- specific reverse primer, and the resulting cDNA products were subse-

quently amplified by nested PCR using StTCP23mRNA primers (S1 Table). The purified

nested PCR products were cloned into the pGEM-T easy vector (Promega, USA) and commer-

cially sequenced.

3´ RACE Exp.2 followed the protocol from Zuber et al. [25]. Twenty pmol of a 5-riboadeny-

lated DNA oligonucleotide (3-Adaptor, S1 Table) were ligated to 10 μg of total RNA using 20

U of T4 RNA Ligase 1 (NEB, Inc, USA) in a final volume of 100 μl for 1 h at 37˚C and 1X T4 of

RNA Ligase Reaction Buffer. The adapter-ligated mRNAs were then recovered by phenol/

chloroform extraction followed by ethanol precipitation. cDNA synthesis was performed in

two 20 μl-reactions for each sample. Each 20 μl reaction contained 2 μg of purified ligated

RNA, 50 pmol of the RT oligonucleotide (S1 Table). Reactions were incubated at 50˚C for 10

min, and then at 80˚C for 10 min to inactivate the reverse transcriptase. 3´ RACE amplifica-

tions were performed using the gene-specific primers, and the GeneRacer 30 primers (S1

Table) after the vd-sRNA-cleaved target mRNA libraries were prepared. The amplification

products were gel purified and cloned. Six independent clones were sequenced, and the result-

ing sequences clones were aligned to the predicted StTCP23mRNA sequences for detection of

splicing sites.

Construction of TRV VIGS vectors and agroinfiltration

The VIGS vectors pTRV1 (RNA1) and pTRV2-LIC 2.0 beta (pYY13) used for VIGS of

StTCP23 were kindly provided by Dr Yule Liu (Tsinghua University, Beijing, China). The

pTRV2-LIC 2.0 beta vector containing TRV RNA2 was used in silencing experiments to

express a partial sequence of StTCP23 gene amplified by specific primers (S1 Table). The

resulting PCR products were ligated into pTRV after cleavage with the appropriate enzymes as

described previously [76–79]. The pssRNAit server (http://plantgrn.no-ble.org/pssRNAit/)

together with the Solanum tuberosum potato unigene [DFCI Gene Index (STGI), "version 13

released on 2010_04_16] and potato transcript [Group Phureja DM1-3 516R44 (CIP801092)

Genome 3.4 transcripts] databases were used to detect potential siRNA off-targeting.

Sequences lacking problematic regions were chosen for VIGS experiments. A PDS gene con-

struct in pTRV: PDS was used for control treatment.

TRV infection by Agrobacterium tumefaciens strain GV3101 infiltration of potato variety

cv. Atlantic was performed as previously described [80]. To confirm systemic infection by

TRV, viral RNAs in newly emerged leaves were amplified by RT-qPCR with primers designed

from the TRV capsid protein (CP)-coding gene. The Actin-1 gene of potato

(PGSC0003DMT400071331) served as internal reference.

GFP transient expression vector and agro-infiltration

To confirm the targeting of VM-siRNA46 to StTCP23 transcripts, a green fluorescent protein

(GFP) tagged target construct was prepared by ligating the 21 nt predicted target sequence

(StTCP23-3´ UTR) into the 3´-untranslated region (3´ UTR) of the GFP gene under the con-

trol of the 35s promoter in pCAMBIA1300-35S-GFP vector as previously described [81, 82].
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The transient miRNA expression construct was created in pGreen II 62-SK as described [83].

The GFP construct was co-agro-infiltrated into Nicotiana benthamiana leaves together with

either the targeting amiRNA46 construct or an empty vector. At 5dpi, agro-infiltrated leaves

were observed under UV illumination, and GFP fluorescence was recorded.

Quantification of endogenous GA and chemical treatments

Quantitative analyses of endogenous GAs were carried out on samples of tuber tissue collected

from transgenic clones (amiR45, amiR46, amiR71) as well as healthy and PSTVd-infected

non-transgenic cv. Atlantic plants. Tubers (three independent replicates) were harvested from

3-month-old plants and immediately frozen in liquid nitrogen before being ground into a fine

powder. A portion (0.1gm fresh weight) of each sample was extracted with 80% methyl alcohol,

and GAs were quantified by High Performance Liquid Chromatography (HPLC, Rigol L3000)

on a Kromasil C18 reversed-phase chromatographic column (250 mm x 4.6 mm, 5 μm) using

selected ion monitoring.

Stock solutions of GA3 (500 uM, Sigma) and paclobutrazol (500 mg/L, Sigma) were pre-

pared in 100% ethanol containing 0.02% (v/v) Tween 20. Month-old young plants growing in

soil were sprayed at two weeks intervals with either GA3 (5 uM) or paclobutrazol (50 mg/L), a

GA3 biosynthesis inhibitor. Control plants were sprayed with distilled water containing 0.02%

(v/v) Tween 20. Tubers were harvested and evaluated 4 months after planting.

Measurement of pollen viability

Pollen viability was measured using pollen grains collected from three flowers per plant. Via-

bility rates (%) were calculated using automatic and manual pollen grain counting for six

amiRNA transgenic and one control line.

Statistical analysis

All data were analyzed by ANOVA (analysis of variance) and the Student’s t-test, where

n = 18. Error bars indicate ± SE (standard error) as determined by the Origin8 program. Statis-

tical differences were considered significant at p< 0.05 (�), p< 0.01 (��).

Supporting information

S1 Fig. Differential RT-qPCR amplification of StTCP23 mRNA around the sRNA-binding

site is consistent with vd-sRNA-mediated cleavage. (A) Schematic diagram of RT-qPCR

primer design. (B) RT-qPCR amplification result. The region downstream of the predicted vd-

sRNA-binding site in StTCP23mRNA (PCR3) shows higher ratios of RT-qPCR amplification

than the region upstream of (PCR2) or spanning (PCR1) the binding site. The value of PCR1

was set as 1. Left panel: oligo-dT primer was used for reverse transcription. Right panel: ran-

dom hexamer primers was used for reverse transcription.

(TIF)

S2 Fig. Sequence complementarity between StTCP23 mRNA and the upper portion of

PSTVd V(irulence) M(odulating) region. Green: G-U wobble base pair; red: mismatch.

Lethal PSTVd strains RG1 and KF440-2 differ from intermediate and mild strains at positions

46 (C) and 47 (A) where these positions are occupied by G and C, respectively. Lethal strain

AS1 differs at position 47 (U).

(TIF)
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S3 Fig. Developmental effects of PSTVd amiRNA expression in transgenic potato. (A)

Branched phenotypes were observed in amiR46 transgenic lines. (B) The above-ground por-

tions of these plants matured early, and tubers developed more rapidly than for non-transgenic

controls, Total lifespan from emergence of the first shoot to senescence and death of the

mature plant was only two months. (C) Abnormal anther development in several lines express-

ing PSTVd amiRNAs. (D) Pollen viability measured using pollen grains collected from three

flowers per plant. Viability rates (%) were calculated using both automatic and manual pollen

grain counting for six amiRNA transgenic lines and wild type control.

(TIF)

S4 Fig. Heat map representation of StTCP23 expression in different tissues. The three heat

maps are derived from either FPKM data from the PGSC database (A = DM, B = RH) or RT-

qPCR analysis of cv. Atlantic (C). All RT-qPCR experiments were performed using three bio-

logical replicates and with three technical replicates. The relative expression levels for each

gene were calculated using 2−ΔΔCT method in comparison with the control gene. Relative

expression values were transformed to log2 (value +1), and the number was represented by the

color bar, red as higher expression levels and blue as lower expression levels.

(TIF)

S5 Fig. Heat map representation comparing the expression levels in leaf tissue of different

amiRNAs. From left to right, three-time course (1, 2, 3 month) of PSTVd-infected non-trans-

genic plants and amiRNAs transgenic Line (amiR24-2, amiR45-14, amiR46-4, amiR47-14,

amiR50-12, amiR71-6 was used for relative amiRNA expression respectively) followed by

uninfected non-transgenic cv. Atlantic plants. All RT-qPCR experiments were performed

using three biological replicates and with three technical replicates. Expression levels in all

samples were compared with that in one- month infected cv. Atlantic plants (2-ΔΔCT = 1) by

RT-qPCR analysis, and relative expression levels were transformed to log2 (value +1). The

color scale representing the relative signal values is shown at the upper right (blue; low expres-

sion, yellow; medium expression, and red; high expression). Red triangle on the right side of

the figure indicate accession numbers for StTCP23.

(TIF)

S6 Fig. Heat map representation comparing the expression levels in leaf tissue of potential

PSTVd VM sRNA target genes. From left to right, three-time course (1, 2, 3 month) of unin-

fected non-transgenic cv. Atlantic plants and amiRNAs transgenic Line (amiR24-2, amiR45-

14, amiR46-4, amiR47-14, amiR50-12, amiR71-6) followed by PSTVd-infected non-transgenic

plants. All RT-qPCR experiments were performed using three biological replicates and with

three technical replicates. Expression levels in all samples were compared with that in one-

month uninfected cv. Atlantic plants (2-ΔΔCT = 1) by RT-qPCR analysis, and relative expres-

sion levels were transformed to log2 (value +1). The color scale representing the relative signal

values is shown at the upper right (blue; low expression, yellow; medium expression, and red;

high expression). Red triangle on the right side of the figure indicate accession numbers for

StTCP23.

(TIF)

S7 Fig. Phylogenetic analysis of TCP family members from Solanum tuberosum, Arabidop-
sis thaliana. (A) An unrooted neighbor-joining phylogenetic tree was constructed from an

unadjusted ClustalW alignment of the full-length amino acid sequences of 23 potato and 24

Arabidopsis TCP proteins downloaded from PGSC (http://solanaceae.plantbiology.msu.edu/)

and PlantTFDB (http://planttfdb.cbi.pku.edu.cn/) respectively, using MEGA 6.0 and 1000

bootstrap replications. Three TCP proteins from A.majus and one from Z.mays were included
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as controls. The three resulting clades (CYC, PCF, CIN) are shaded in different colors. (B)

Comparison of tuber number and (C) average tuber weight for treatment with ethanol, PBZ,

or GA3.

(TIF)

S1 Table. Oligonucleotides used in this study.

(DOCX)

S2 Table. Putative TCP binding sites in promoters of genes involved in GA metabolism.

(DOCX)

S1 File. Predicted target genes for the different PSTVd sRNAs corresponding to the vd-

sRNAs and their expression patterns in PSTVd-infected and amiRNA potato plants.

(XLSX)
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